A NEW PROOF OF A. F. TIMAN'S APPROXIMATION THEOREM

BY

T. M. MILLS AND A. K. VARMA

ABSTRACT

This paper gives a new proof of A. F. Timan's approximation theorem. It seems to be of considerable advantage that for a fixed n our polynomial $G_n(f)$ is of degree $\leq n-1$ and depends on n values of f(x) only.

1. Introduction

Let f be a continuous function on [-1, +1] with the modulus of continuity ω (h). It was discovered by Nikol'skii [4] that the quality of approximation by polynomials increases toward the end points of the interval. Later, Timan [5] obtained the following result.

THEOREM 1. There exists a constant M such that for each function $f \in C[-1, +1]$ there is a sequence of polynomials $P_n(x)$ for which

$$|f(x) - P_n(x)| \le M \left[\omega \left(\frac{\sqrt{1 - x^2}}{n} \right) + \omega \left(\frac{1}{n^2} \right) \right].$$

By showing (1.1), we give a new proof of A. F. Timan's theorem. It seems to be of considerable advantage that for a fixed n our polynomial $G_n(f)$ (see below) is of degree $\leq n-1$ and depends on n values of f(x) only. Compare also with known results [1] and [5].

Let

(1.2)
$$x_{kn} = \frac{\cos(2k-1)\pi}{2n} = \cos\theta_{kn} k = 1, 2, \dots, n$$

and the fundamental polynomials of Lagrange interpolation with respect to (1.2) be given by $(x = \cos \theta)$:

Received October 30, 1973

$$(1.3) l_{kn}(\theta) = \frac{(-1)^{k+1} \cos n\theta \sin \theta_{kn}}{n (\cos \theta - \cos \theta_{kn})} k = 1, 2, \dots, n.$$

In 1941 G. Grünwald [2] defined a sequence of algebraic polynomials of degree $\leq n-1$ in x by

(1.4)
$$G_n[f,\theta] = \sum_{k=1}^n f(x_{kn}) A_{kn}(\theta)$$

where

$$(1.5) 2A_{kn}(\theta) = l_{kn} \left(\theta + \frac{\pi}{2n}\right) + l_{kn} \left(\theta - \frac{\pi}{2n}\right).$$

Moreover he proved that if $f \in C$ [-1, +1] then $\lim_{n\to\infty} G_n[f, \theta] = f(\cos \theta)$ and the convergence is uniform in [-1, +1].

The object of this paper is to prove the following theorem.

THEOREM 2. Let $f \in C[-1, +1]$ and we denote by $\omega(\delta)$ its modulus of continuity. Then $(x = \cos \theta)$ we have

2. Preliminaries

Throughout this section we assume that $(j-1)\pi/n < \theta < j\pi/n$. Moreover, j, k, and i are related by the relation $j+1 < k = j+i \le n$ or $1 \le k = j-i < j-1$. The following inequalities are easy to verify.

$$(2.1) \sin\frac{\theta}{2} \le \sin\frac{\theta}{2} + \sin\frac{(k-1)\pi}{2n} \le \sin\frac{\theta}{2} + \sin\frac{k\pi}{2n}$$

$$(2.2) \sin\frac{\theta_k}{2} \le \sin\frac{\theta}{2} + \sin\frac{k\pi}{2n}, \cos\frac{\theta_k}{2} \le 2\cos\left(\frac{\theta}{4} + \frac{(k-1)\pi}{4n}\right)$$

(2.3)
$$\cos \frac{\theta}{2} \le 2 \cos \left(\frac{\theta}{4} + \frac{k\pi}{4n} \right)$$

$$\left|\sin\left(\frac{k\pi}{4n}-\frac{\theta}{4}\right)\right| \geq \frac{i-1}{2n}, \quad \left|\sin\left(\frac{(k-1)\pi}{4n}-\frac{\theta}{4}\right)\right| \geq \frac{i-1}{2n}$$

(2.5)
$$\cos\left(\frac{(k-1)\pi}{4n} + \frac{\theta}{4}\right) \ge \cos\left(\frac{k\pi}{4n} + \frac{\theta}{4}\right) \ge \frac{i}{2n} \text{ if } \frac{\pi}{2} \le \theta \le \pi \text{ and}$$

$$k=\left\lceil\frac{n}{2}\right\rceil+1,\cdots,n$$

(2.6)
$$\cos\left(\frac{(k-1)\pi}{4n} + \frac{\theta}{4}\right) \ge \cos\left(\frac{k\pi}{4n} + \frac{\theta}{4}\right) \ge \frac{1}{5} \text{ if } 0 \le \theta \le \frac{\pi}{2} \text{ and}$$

$$k=1,2,\cdots,n$$

(2.7)
$$\cos\left(\frac{(k-1)\pi}{4n} + \frac{\theta}{4}\right) \ge \cos\left(\frac{k\pi}{4n} + \frac{\theta}{4}\right) \ge \frac{1}{5} \text{ if } \frac{\pi}{2} \le \theta \le \pi, \text{ and }$$

$$k=1,2,\cdots,[n/2]$$

$$(2.8) \sin\frac{\theta}{2} + \sin\frac{k\pi}{2n} \ge \sin\frac{\theta}{2} + \sin\frac{(k-1)\pi}{2n} \ge \frac{i-1}{n}, 0 \le \theta \le \frac{\pi}{2}$$

(2.9)
$$\sin \frac{\theta}{2} + \sin \frac{k\pi}{2n} \ge \sin \frac{\theta}{2} + \sin \frac{(k-1)\pi}{2n} \ge \frac{1}{\sqrt{2}}, \qquad \frac{\pi}{2} \le \theta \le \pi.$$

From (1.5) we have another representation of

$$(2.10) A_k(\theta) = \frac{(-1)^k \sin \theta_k \sin n\theta \sin \theta \sin \frac{\pi}{2n}}{4n \left(\sin^2 \frac{k\pi}{2n} - \sin^2 \frac{\theta}{2}\right) \left(\sin^2 \frac{(k-1)\pi}{2n} - \sin^2 \frac{\theta}{2}\right)}.$$

Moreover we need

$$(2.11) \ A_k(\theta) + A_{k+1}(\theta) = \frac{\left(\sin^2\frac{(k+1)\pi}{2n} - \sin^2\frac{(k-1)\pi}{2n}\right)A_k(\theta)}{\sin^2\frac{(k+1)\pi}{2n} - \sin^2\frac{\theta}{2}} + \frac{\sin\frac{\pi}{2n}A_{k+1}(\theta)}{\sin\theta_{k+1}},$$

(2.12)
$$\left| \frac{\sin^2 \frac{(k+1)\pi}{2n} - \sin^2 \frac{(k-1)\pi}{2n}}{\sin^2 \frac{(k+1)\pi}{2n} - \sin^2 \frac{\theta}{2}} \right| \leq \frac{2\pi}{i}.$$

3. Estimates

The following estimates of $A_k(\theta)$ are needed for the proof of Theorem 2.

LEMMA 1. If $(j-1)\pi/n < \theta < j\pi/n$, letting $j+1 \le k = j+i \le n$ or $1 \le k = j-i < j-1$, then we have:

3.1)
$$|A_k(\theta)| = O(1) \text{ if } k = j-1, j, \text{ or } j+1,$$

$$|A_k(\theta)| \leq \frac{\pi}{i^2}$$

$$(3.3) |A_k(\theta)| \leq \frac{5\pi n \sin \theta}{i^3},$$

$$|A_k(\theta)| \leq \frac{5\pi n \sin \theta_k}{i^3},$$

$$|A_k(\theta)| \leq \frac{25n^2 \sin \theta \sin \theta_k}{i^4}.$$

PROOF. For (3.1) see [2]. (3.2) follows from (2.10), (2.1)–(2.4). If $0 \le \theta \le \pi/2$ then (3.3) follows from (2.10), (2.2), (2.4), (2.6), and (2.8). If $\pi/2 \le \theta < \pi$, then (3.3) follows from (2.10), (2.4), (2.5), (2.7), and (2.9). Proofs for (3.4) and (3.5) are based on the same lines.

LEMMA 2. Let $(j-1)\pi/n < \theta < j\pi/n$. Then we have:

(3.6)
$$|A_k(\theta) + A_{k+1}(\theta)| = \frac{5\pi^2}{i^3} \text{ if } j+1 < k = j+i < n,$$

(3.7)
$$|A_k(\theta) + A_{k-1}(\theta)| = \frac{5\pi^2}{i^3} \text{ if } 1 < k = j - i < j - 1.$$

Also we have

(3.8)
$$|A_k(\theta) + A_{k+1}(\theta)| = \frac{360 n \sin \theta}{i^4} \text{ if } j+1 < k = j+i < n,$$

(3.9)
$$|A_k(\theta) + A_{k-1}(\theta)| = \frac{360 n \sin \theta}{i^4} \text{ if } 1 < k = j - i < j - 1.$$

PROOF. (3.6) follows immediately from (2.11), (2.13), (3.2), and (3.4). (3.8) is a simple consequence of (2.11), (3.3), and (3.5). Proof of (3.7) and (3.9) are similar so we omit the details.

It is easy to verify that $j/n \le \sin \theta \le j\pi/n$ for $j = 2, 3, \dots, \lfloor n/2 \rfloor$, $(n-j)/n \le \sin \theta \le (n-j)\pi/n$ for $j = \lfloor n/2 \rfloor + 1, \dots, n-1$. On using these results and known properties of modulus of continuity we have

$$\omega\left(\frac{i}{n^2}\right) \le \frac{2i}{j} \omega\left(\frac{\sin\theta}{n}\right) \qquad j \le \left[\frac{n}{2}\right]$$
$$\omega\left(\frac{i}{n^2}\right) \le \frac{2i}{n-j} \omega\left(\frac{\sin\theta}{n}\right) \qquad j \ge \left[\frac{n}{2}\right].$$

With the help of these results we recast the two lemmas of O. Kis [3] as they are needed in the proof.

LEMMA 3 (O. Kis [3]). Let $(j-1)\pi/n < \theta < j\pi/n$. Then we have

$$|f(x_k) - f(x)| = O\left[\omega\left(\frac{\sin\theta}{n}\right) + \omega\left(\frac{1}{n^2}\right)\right]$$
 if $k = j$

$$= O\left[\frac{i^2}{j}\omega\left(\frac{\sin\theta}{n}\right)\right] \quad \text{if } j \leq \left[\frac{n}{2}\right]$$
$$= O\left[\frac{i^2}{n-j}\omega\left(\frac{\sin\theta}{n}\right)\right] \quad \text{if } j > \left[\frac{n}{2}\right].$$

LEMMA 4 (O. Kis [3]). Let $(j-1)\pi/n < \theta < j\pi/n$. Then

$$|f(x_k) - f(x_{k+1})| = O\left[\frac{i}{j}\omega\left(\frac{\sin\theta}{n}\right)\right] \quad \text{if } j \le \left[\frac{n}{2}\right]$$
$$= O\left[\frac{i}{n-j}\omega\left(\frac{\sin\theta}{n}\right)\right] \quad \text{if } j > \left[\frac{n}{2}\right].$$

Similar estimates hold for $|f(x_k) - f(x_{k-1})|$.

PROOF OF THEOREM 2. By (1.5) and the definition of θ we have

$$G_n[f,\theta] - f(\cos\theta) = \sum_{k=1}^{n} (f(x_k) - f(x)) A_k(\theta)$$
$$= \sum_{k=1}^{j-2} + u_{j-1} + u_j + u_{j+1} + \sum_{k=j+2}^{n} (f(x_k) - f(x)) A_k(\theta)$$

Of course, if j=1 or 2 (or n-1, n) the first (or last) summation will not appear. Estimates of $\sum_{k=1}^{j-2}$ and $\sum_{k=j+2}^{n}$ are similar.

By (3.10) and (3.1) we have

$$|u_j| = |f(x_j) - f(x)| |A_j(\theta)| = O\left[\omega\left(\frac{\sin\theta}{n}\right) + \omega\left(\frac{1}{n^2}\right)\right].$$

Similarly the estimates of u_{j-1} and u_{j+1} can be computed. Let us now estimate

$$T \equiv \sum_{k=i+2} (fx_k) - f(x) A_k(\theta).$$

Here we use extremely useful ideas of O. Kis [3], and group the summands in pairs. If we set

$$B_{k}(\theta) \equiv (f(x_{k}) - f(x)) A_{k}(\theta) + (f(x_{k+1}) - f(x)) A_{k+1}(\theta)$$

= $(A_{k}(\theta) + A_{k+1}(\theta)) (f(x_{k}) - f(x)) + (f(x_{k+1}) - f(x)) A_{k+1}(\theta)$

then we obtain $T = \sum_{i \in I} B_{j+1}(\theta) + [A_n(\theta) (f(x_n) - f(x))]$ where

$$I = \{i: i < n - j, \quad i = 2, 4, 6, \cdots\}.$$

The last term written in the bracket is to signify that it appears only if n-j is even. Let $0 \le \theta \le \pi/2$; then we express

$$\sum |B_{j+i}(\theta)| = \sum_{i \leq j} |B_{j+i}(\theta)| + \sum_{i \geq j} |B_{j+i}(\theta)|,$$

and use appropriate parts of Lemmas 1,2,3, and 4. Similarly, in the case $\pi/2 \le \theta \le \pi$, we express

$$\sum |B_{j+i}(\theta)| = \sum_{i \le n-j} |B_{j+i}(\theta)| + \sum_{i \ge n-j} |B_{j+i}(\theta)|$$

and use once again Lemmas 1,2,3, and 4 which gives the desired result. This proves the theorem.

REFERENCES

- 1. G. Freud and P. Vertesi, A new proof of A. F. Timan's approximation theorem, Studia Sci. Math. Hungar. II (1967), 403-414.
- 2. G. Grünwald, On a convergence theorem for the Langrange interpolation polynomials Bull. Amer. Math. Soc. 47 (1941), 271-275.
- 3. O. Kis, Remarks on the order of covergence of Lagrangian interpolation, (Russian) Ann. Univ. Sci. Budapest, 11 (1968), 27-40.
- 4. S. M. Nikol'skii, On the best approximation of functions statisfying a Lip. condition by polynomials, IZV. 10 (1946), 295-422.
- 5. A. F. Timan, A strengthening of Jackson's theorem on the best approximation of continuous functions by polynomials on a finite interval of the real axis, (Russian) Dokl. 78 (1951), 17-20.

DEPARTMENT OF MATHEMATICS

University of Florida

GAINESVILLE, FLORIDA, U. S. A.