A NEW PROOF OF A. F. TIMAN'S APPROXIMATION THEOREM

BY

T. M. MILLS AND A. K. VARMA

ABSTRACT

This paper gives a new proof of A. F. Timan's approximation theorem. It seems to be of considerable advantage that for a fixed *n* our polynomial $G_n(f)$ is of degree \leq n-1 and depends on n values of $f(x)$ only.

1. Introduction

Let f be a continuous function on $[-1, +1]$ with the modulus of continuity ω (h). It was discovered by Nikol'skii [4] that the quality of approximation by polynomials increases toward the end points of the interval. Later, Timan [5] obtained the following result.

THEOREM 1. *There exists a constant M such that for each function* $f \in C[-1, +1]$ *there is a sequence of polynomials P_n(x) for which*

(1.1)
$$
\left|f(x) - P_n(x)\right| \leq M \left[\omega\left(\frac{\sqrt{1-x^2}}{n}\right) + \omega\left(\frac{1}{n^2}\right)\right].
$$

By showing (1.1), we give a new proof of A. F. Timan's theorem. It seems to be of considerable advantage that for a fixed *n* our polynomial $G_n(f)$ (see below) is of degree $\leq n - 1$ and depends on *n* values of $f(x)$ only. Compare also with known results $\begin{bmatrix} 1 \end{bmatrix}$ and $\begin{bmatrix} 5 \end{bmatrix}$.

Let

(1.2)
$$
x_{kn} = \frac{\cos((2k-1)\pi)}{2n} = \cos \theta_{kn} \qquad k = 1, 2, \cdots, n
$$

and the fundamental polynomials of Lagrange interpolation with respect to (1.2) be given by $(x = \cos \theta)$:

Received October 30, 1973

40 T. M. MILLS AND A. K. VARMA Israel J. Math.,

(1.3)
$$
l_{kn}(\theta) = \frac{(-1)^{k+1} \cos n\theta \sin \theta_{kn}}{n (\cos \theta - \cos \theta_{kn})} \qquad k = 1, 2, \cdots, n.
$$

In 1941 G. Griinwald [2] defined a sequence of algebraic polynomials of degree $\leq n-1$ in x by

(1.4)
$$
G_n[f,\theta] = \sum_{k=1}^n f(x_{kn}) A_{kn}(\theta)
$$

where

(1.5)
$$
2A_{kn}(\theta) = l_{kn} \left(\theta + \frac{\pi}{2n}\right) + l_{kn} \left(\theta - \frac{\pi}{2n}\right).
$$

Moreover he proved that if $f \in C$ [-1, + 1] then $\lim_{n \to \infty} G_n[f, \theta] = f(\cos \theta)$ and the convergence is uniform in $[-1, +1]$.

The object of this paper is to prove the following theorem.

THEOREM 2. Let $f \in C[-1, +1]$ and we denote by $\omega(\delta)$ its modulus of *continuity. Then* $(x = \cos \theta)$ *we have*

(1.6)
$$
\left| G_n[f, \theta] - f(\cos \theta) \right| = O\left[\omega \left(\frac{\sqrt{1-x^2}}{n} \right) + \omega \left(\frac{1}{n^2} \right) \right].
$$

2. Preliminaries

Throughout this section we assume that $(j - 1)\pi/n < \theta < j\pi/n$. Moreover, j, k, and *i* are related by the relation $j + 1 < k = j + i \leq n$ or $1 \leq k = j - i < j - 1$.

The following inequalities are easy to verify.

$$
(2.1) \qquad \sin\frac{\theta}{2} \le \sin\frac{\theta}{2} + \sin\frac{(k-1)\pi}{2n} \le \sin\frac{\theta}{2} + \sin\frac{k\pi}{2n}
$$

(2.2)
$$
\sin\frac{\theta_k}{2} \le \sin\frac{\theta}{2} + \sin\frac{k\pi}{2n}, \qquad \cos\frac{\theta_k}{2} \le 2\cos\left(\frac{\theta}{4} + \frac{(k-1)\pi}{4n}\right)
$$

$$
(2.3) \qquad \cos \frac{\theta}{2} \leq 2 \cos \left(\frac{\theta}{4} + \frac{k\pi}{4n} \right)
$$

$$
(2.4) \qquad \left|\sin\left(\frac{k\pi}{4n}-\frac{\theta}{4}\right)\right| \geq \frac{i-1}{2n}, \qquad \left|\sin\left(\frac{(k-1)\pi}{4n}-\frac{\theta}{4}\right)\right| \geq \frac{i-1}{2n}
$$

(2.5)
$$
\cos\left(\frac{(k-1)\pi}{4n} + \frac{\theta}{4}\right) \ge \cos\left(\frac{k\pi}{4n} + \frac{\theta}{4}\right) \ge \frac{i}{2n}
$$
 if $\frac{\pi}{2} \le \theta \le \pi$ and

$$
k = \left[\frac{n}{2}\right] + 1, \cdots, n
$$

$$
(2.6) \qquad \cos\left(\frac{(k-1)\pi}{4n} + \frac{\theta}{4}\right) \ge \cos\left(\frac{k\pi}{4n} + \frac{\theta}{4}\right) \ge \frac{1}{5} \text{ if } 0 \le \theta \le \frac{\pi}{2} \text{ and}
$$
\n
$$
k = 1, 2, \cdots, n
$$

$$
(2.7) \qquad \cos\left(\frac{k-1\pi}{4n}+\frac{\theta}{4}\right) \ge \cos\left(\frac{k\pi}{4n}+\frac{\theta}{4}\right) \ge \frac{1}{5} \text{ if } \frac{\pi}{2} \le \theta \le \pi, \text{ and}
$$

$$
(2.8) \qquad \sin\frac{\theta}{2} + \sin\frac{k\pi}{2n} \ge \sin\frac{\theta}{2} + \sin\frac{(k-1)\pi}{2n} \ge \frac{i-1}{n}, \qquad 0 \le \theta \le \frac{\pi}{2}
$$

$$
(2.9) \qquad \sin\frac{\theta}{2} + \sin\frac{k\pi}{2n} \ge \sin\frac{\theta}{2} + \sin\frac{(k-1)\pi}{2n} \ge \frac{1}{\sqrt{2}}, \qquad \frac{\pi}{2} \le \theta \le \pi.
$$

From (1.5) we have another representation of

(2.10)
$$
A_k(\theta) = \frac{(-1)^k \sin \theta_k \sin n\theta \sin \theta \sin \frac{\pi}{2n}}{4n \left(\sin^2 \frac{k\pi}{2n} - \sin^2 \frac{\theta}{2}\right) \left(\sin^2 \frac{(k-1)\pi}{2n} - \sin^2 \frac{\theta}{2}\right)}.
$$

Moreover we need

$$
(2.11) \ A_k(\theta) + A_{k+1}(\theta) = \frac{\left(\sin^2\frac{(k+1)\pi}{2n} - \sin^2\frac{(k-1)\pi}{2n}\right)A_k(\theta)}{\sin^2\frac{(k+1)\pi}{2n} - \sin^2\frac{\theta}{2}} + \frac{\sin\frac{\pi}{2n}A_{k+1}(\theta)}{\sin\theta_{k+1}},
$$

(2.12)
$$
\left| \frac{\sin^2 \frac{(k+1)\pi}{2n} - \sin^2 \frac{(k-1)\pi}{2n}}{\sin^2 \frac{(k+1)\pi}{2n} - \sin^2 \frac{\theta}{2}} \right| \leq \frac{2\pi}{i}.
$$

3. Estimates

The following estimates of $A_k(\theta)$ are needed for the proof of Theorem 2.

LEMMA 1. If $(j-1)\pi/n < \theta < j\pi/n$, letting $j+1 \leq k = j+i \leq n$ or $1 \leq k$ $j-i < j-1$, then we have:

3.1)
$$
|A_k(\theta)| = O(1) \text{ if } k = j - 1, j, \text{ or } j + 1,
$$

3.2) $|A_k(\theta)| \leq \frac{\pi}{i^2}$

$$
(3.3) \t\t |A_k(\theta)| \leq \frac{5\pi n \sin \theta}{i^3},
$$

 $k = 1, 2, \dots, \lceil n/2 \rceil$

$$
(3.4) \t\t |A_k(\theta)| \leq \frac{5\pi n \sin \theta_k}{i^3},
$$

$$
(3.5) \t\t\t |A_k(\theta)| \leq \frac{25n^2\sin\theta\sin\theta_k}{i^4}.
$$

PROOF. For (3.1) see [2]. (3.2) follows from (2.10), (2.1)-(2.4). If $0 \le \theta \le \pi/2$ then (3.3) follows from (2.10), (2.2), (2.4), (2.6), and (2.8). If $\pi/2 \le \theta < \pi$, then (3.3) follows from (2.10), (2.4), (2.5), (2.7), and (2.9). Proofs for (3.4) and (3.5) are based on the same lines.

LEMMA 2. Let $(j-1)\pi/n < \theta < j\pi/n$. Then we have:

(3.6)
$$
|A_k(\theta) + A_{k+1}(\theta)| = \frac{5\pi^2}{i^3} \text{ if } j+1 < k = j+i < n,
$$

(3.7)
$$
\left| A_k(\theta) + A_{k-1}(\theta) \right| = \frac{5\pi^2}{i^3} \text{ if } 1 < k = j - i < j - 1.
$$

Also we have

(3.8)
$$
|A_k(\theta) + A_{k+1}(\theta)| = \frac{360 n \sin \theta}{i^4} \text{ if } j+1 < k = j+i < n,
$$

(3.9)
$$
\left| A_k(\theta) + A_{k-1}(\theta) \right| = \frac{360 n \sin \theta}{i^4} \text{ if } 1 < k = j - i < j - 1.
$$

Pgoor. (3.6) follows immediately from (2.11), (2.13), (3.2), and (3.4). (3.8) is a simple consequence of (2.11) , (3.3) , and (3.5) . Proof of (3.7) and (3.9) are similar so we omit the details.

It is easy to verify that $j/n \leq \sin \theta \leq j\pi/n$ for $j = 2, 3, \dots, \lceil n/2 \rceil$, $(n-j)/n$ $\leq \sin\theta \leq (n-j)\pi/n$ for $j = \lceil n/2 \rceil + 1, \dots, n-1$. On using these results and known properties of modulus of continuity we have

$$
\omega\left(\frac{i}{n^2}\right) \le \frac{2i}{j} \omega\left(\frac{\sin\theta}{n}\right) \qquad j \le \left[\frac{n}{2}\right]
$$

$$
\omega\left(\frac{i}{n^2}\right) \le \frac{2i}{n-j} \omega\left(\frac{\sin\theta}{n}\right) \qquad j \ge \left[\frac{n}{2}\right].
$$

With the help of these results we recast the two lemmas of O . Kis $\lceil 3 \rceil$ as they are needed in the proof.

LEMMA 3 (O. Kis [3]). Let $(j - 1)\pi/n < \theta < j\pi/n$. Then we have

$$
|f(x_k) - f(x)| = O\left[\omega\left(\frac{\sin \theta}{n}\right) + \omega\left(\frac{1}{n^2}\right)\right]
$$
 if $k = j$

$$
= O\left[\frac{i^2}{j}\omega\left(\frac{\sin\theta}{n}\right)\right] \quad \text{if } j \leq \left[\frac{n}{2}\right]
$$

$$
= O\left[\frac{i^2}{n-j}\omega\left(\frac{\sin\theta}{n}\right)\right] \quad \text{if } j > \left[\frac{n}{2}\right].
$$

LEMMA 4 (O. Kis [3]). *Let* $(j - 1)\pi/n < \theta < j\pi/n$. Then

$$
\begin{aligned} \left| f(x_k) - f(x_{k+1}) \right| &= O\left[\frac{i}{j} \omega \left(\frac{\sin \theta}{n} \right) \right] \quad \text{if } j \leq \left[\frac{n}{2} \right] \\ &= O\left[\frac{i}{n-j} \omega \left(\frac{\sin \theta}{n} \right) \right] \quad \text{if } j > \left[\frac{n}{2} \right]. \end{aligned}
$$

Similar estimates hold for $|f(x_k) - f(x_{k-1})|$.

PROOF OF THEOREM 2. By (1.5) and the definition of θ we have

$$
G_n[f, \theta] - f(\cos \theta) = \sum_{k=1}^n (f(x_k) - f(x)) A_k(\theta)
$$

=
$$
\sum_{k=1}^{j-2} + u_{j-1} + u_j + u_{j+1} + \sum_{k=j+2}^n
$$

Of course, if $j = 1$ or 2 (or $n-1$, *n*) the first (or last) summation will not appear. Estimates of $\sum_{k=1}^{j-2}$ and $\sum_{k=j+2}^{n}$ are similar.

By (3.10) and (3.1) we have

$$
|u_j| = |f(x_j) - f(x)| |A_j(\theta)| = O\bigg[\omega\bigg(\frac{\sin\theta}{n}\bigg) + \omega\bigg(\frac{1}{n^2}\bigg)\bigg].
$$

Similarly the estimates of u_{j-1} and u_{j+1} can be computed. Let us now estimate

$$
T \equiv \sum_{k=j+2} (fx_k) - f(x)A_k(\theta).
$$

Here we use extremely useful ideas of O. Kis [3], and group the summands in pairs. If we set

$$
B_k(\theta) \equiv (f(x_k) - f(x)) A_k(\theta) + (f(x_{k+1}) - f(x)) A_{k+1}(\theta)
$$

= $(A_k(\theta) + A_{k+1}(\theta)) (f(x_k) - f(x)) + (f(x_{k+1}) - f(x)) A_{k+1}(\theta)$

then we obtain $T = \sum_{i \in I} B_{j+1}(\theta) + [A_n(\theta) (f(x_n)-f(x))]$ where

$$
I = \{i: i < n-j, \quad i = 2, 4, 6, \cdots\}.
$$

The last term written in the bracket is to signify that it appears only if $n - j$ is even. Let $0 \le \theta \le \pi/2$; then we express

44 T.M. MILLS AND A. K. VARMA Israel J. Math.,

$$
\sum |B_{j+i}(\theta)| = \sum_{i \leq j} |B_{j+i}(\theta) + \sum_{i > j} |B_{j+i}(\theta)|,
$$

and use appropriate parts of Lemmas 1,2,3, and 4. Similarly, in the case $\pi/2 \le \theta$ $\leq \pi$, we express

$$
\Sigma |B_{j+i}(\theta)| = \sum_{i \leq n-j} |B_{j+i}(\theta)| + \sum_{i \geq n-j} |B_{j+i}(\theta)|
$$

and use once again Lcmmas 1,2,3, and 4 which gives the desired result. This proves the theorem.

REFERENCES

1. G. Freud and P. Vertcsi, *,4 new proofofA. F. Timan's approximation theorem,* Studia Sci. Math. Hungar. II (1967), 403-414.

2. G. Grünwald, *On a convergence theorem for the Langrange interpolation polynomials* **Bull.** Amer. Math. Soc. 47 (1941), 271-275.

3. O. Kis, *Remarks on the order of covergence of Lagrangian interpolation,* (Russian) Ann. Univ. Sci. Budapest, 11 (1968), 27-40.

4. S. M. Nikol'skii, *On the best approximation of functions statisfiyng a Lip. condition by polynomials,* IZV. **10** (1940, 295-422.

5. A. F. Timan, *,4 strengthening of Jackson's theorem on the best approximation of continuous functions by polynomials on a finite interval of the real axis,* (Russian) Dokl. 78 (1951), 17-20.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF FLORIDA GAINESVILLE, FLORIDA, U. S. A.